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Fig. 6. A family of polygon cross sections suited for the same rule as the
preceding figures.

rically equal triangles not arranged on a half side but on a whole
side of the inner regular octagon. Furthermore, two geometrically
equal triangles are not right-angled. The exact wave resistance
becomes (because R =1)

R=R,/8

and r, =1.765 and r, = 4.262.

Fig. 6(b), having five geometrically equal right-angled triangles,
is symmetrical with three mirror lines, though the inner regular
hexagon has six mirror lines. The exact wave resistance is

K'(k)
K(k)

R= % R, = 0.09298R,,

where

2(cos w/5—cos3m/5)

k= (1—cos3a/5)(1+cos n/5)

= (.9713.

The radii are , =1.5 and r, =2.0.

In Fig. 6(c), two geometrically equal triangles are not right-
angled, and they are arranged on a whole side of the outer regular
octagon. This case can be considered to be the inversion of Fig.
6(a). Therefore, the exact wave resistance is the same as Fig. 6(a).
The radii are r, =1.631, r, = 0.4142, and r, =1.765.

In Fig. 6(d), both of the inner and outer conductors are not
equiangular polygons. This case is considered as a slight variation
for n =3 of Fig. 2 having three geometrically equal right-angled
triangles. The wave resistance is equal to Fig. 2 because the
procedure of mapping to a semi-circle is similar to Fig. 2. Fig.
6(d) has R = 0.1303R,, », =1.609, r, = 0.5877, and r, = 2.433.

V. CONCLUSION

Some shapes of coaxial inner and outer regular polygonal
conductors can be exactly evaluated on their wave resistance.
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The following special cases of this paper coincide with Wheeler

(1

Herein Wheeler

Fig.1 n=2 Fig. 23
n=3 25
n=4 25

Fig.2 n=2 26 |
n=4 26

Fig.3 n=2 26.
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Analysis of the Transmission Characteristics of
Inhomogeneous Grounded Finlines

" ADALBERT BEYER

Abstract —This paper describes a concept for an efficient design of
finline tapers that is especially useful in cases when certain quantities have
been prescribed with respect to reflection loss and bandwidth. Since abrupt
discontinuities are neglected, the analysis is applicable to smooth finline
tapers only.

Various contour functions are investigated for the taper optimization.
Experimental results for optimized tapers confirm the design theory.

1. INTRODUCTION

Smooth inhomogeneous finlines have already been used as
broad-band components like transformers, attenuators, detectors,
mixers, and nonreciprocal elements [1}, [2], [5].

In the beginning, the design of inhomogeneous finlines was
mainly done experimentally, i.e., the cross sections of these tapers
had been designed with a general parabolical dependence of the
slot widths (2s) on the length coordinate (z) with the exponent
of the parabola having been determined experimentaily [5].

Recently, there have been publications of nonexperimental
design procedutes, e.g., in [6], where the use of a spectral-domain
approach has been suggested. Another concept [9], which consid-
ers inhomogeneous finlines that consist of an infinite number of
elementary homogeneous finline sections, has proved the realiza-
bility of this line.

This paper follows the method presented in [4], which has the
considerable advantage of taking into account the influence of
the thickness of the metallization and of the longitudinal slits in
the housing.
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Fig. 1. Geometry of the unilateral grounded finline section.

II. THE METHOD

Consider the cross section of a finline placed on the lossless
conductor and having a closed boundary / (Fig. 1).

All the electromagnetic fields inside the waveguide are ex-
pressible in terms of the Hertz potentials ® and ¥. The z
dependence of the fields can be described employing a linear
combination of exp(yz) and exp(— yz), where vy is the propa-
gation factor. The time dependence of the electromagnetic fields
exp(jwt) is omitted in the following train of thought.

If the problem of the inhomogeneous finline is to be solved, it
is a fundamental supposition that the properties of the homoge-
neous finline above are known accurately, considering even sec-
ond-order effects like the metallization thickness 4 and the
supporting slit in the waveguide mount ¢. Thus, a complete study
of the grounded unilateral finline is given by [3], where the
eigenvalue equation system is solved by applying the
Ritz—Galerkin method. Using the results of this method, the
eigenvalues p, ., the electromagnetic fields, the effective dielec-

tric constants €. ., as well as the characteristic impedance

Zg .y, Of finlines can be calculated as a function of the geometri-
cal dimensions and the above-mentioned second-order effects.

Next, consider the longitudinal section of a finline (3) shown in
Fig. 2 which is terminated by homogeneous finlines (1) and (2) on
the left- and on the right-hand side.

The transmission and the reflection properties of the problem
mentioned above can be calculated by using the generalized
telegraphists’s equations for waveguides of varying cross section

(8]

ay, it
- = Ym ZmIm - Z C‘nml]n (1)
dz -
n=0
0Ly _ Ym

9z - Zm Um + ,,Z=:0 CmnIn (2)

where U, (z) and I,(z) are the mth modal voltage and current
of the considered inhomogeneous finline, respectively; Z, is the
mth modal characteristic impedance of the above line. The cou-
pling coefficient C,,, between the mth and nth modal is given by

., 98,
Cmn—Len-EdA (3)

where €, and &, are the nth and mth orthogonal vector func-
tions, respectively. The surface integral is extended over 4 the
total cross section of the inhomogeneous finline. In (2), the

influence of the dielectric constant €. ,, on the slot width 2s(z)
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Fig. 2. Longitudinal section of an inhomogeneous finline.

must be taken into account via

2

Ym . phl

= = jwe€€eprp (2) T 4

iz, JOff()]wILO (4)

where p,, is the mth eigenvalue of the inhomogeneous finline.
In the case of the quasi-TE,,-mode propagation in the inhomo-

geneous finline, substitution of the voltage reflection factor T’ in

the general equations (1) and (2) leads to the following expres-

‘sion:

L) ()

i3 2

which is a Riccati’s differential equation.
In order to solve this differential equation, look at the contour
function given by

_ cn) ~0 (5

0, —ogz< =1
dinK
f(z2)={ 2 ER2R2) 3(2), —I<z<+I . (6)
2 dz
0, +il<zg oo

The value K;(z) is defined as

K;(z) = (7

where €. and A, are the effective dielectric constant and A, the
cutoff wavelength of the quasi-TE;,-mode propagation on the
inhomogeneous finline section, respectively. The known incident
wave is excited at z=-—oc0 and the waveguide is properly
terminated at z = + oo.

The characteristic impedance Z, of a lossless waveguide is a
real function; consequently, its contour function f(z) must also
be real

f(2)=1*(z). (®)
Thus, in order to examine the realizability of the given contour
function f(z), the following quadratic integral must exist
(Paley—Wiener’s theorem):
z=+o0

[ 1) P e

z=—o0

)

As the Riccati’s differential equation (5) will be solved numeri-
cally, for this purpose the impedance function K;(z) is expanded
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into a series given by

0, —ogz<—1
K;(z) = Zaz —l<z<+l. (10)
0, I<zg 4+

By introducing this series expansion into the formula for the
contour function f(z) ((6)) and by using a well-known series
expansion of the logarithmic function, the following form of the
contour function can be found:

f(2)
0, —cogz<+/
oP -1 g+1
1 _
={3 Z (p+1)(z( ) pH)zp, ~l<z<+]
0, +l<z\+oo.

(11)

In this equation, @, is a coefficient which is closely connected
to the expansion coefficients a, of the impedance function
K;(z). Now, if the propagation factor y,(z) is also expanded
into a series given by

P
n(z)= X b,z" (12)
m=0
and if the function g(z), which is defined as
P
g(2)=f(2)- = ¥ & (13)
k=0

is substituted for the function f(z) shown above ((11)), the
Riccati’s differential equation can easily be solved if the reflec-
tion coefficient #; is also formulated as

Iy(z) = ér,«z—zo)kr)i (14)

By using the known condition for the reflection coefficient
L(z=0)=0 (15)

it can be shown that the expansion coefficient T}, of the series for
I3(z) in (14) is zero. The value k- of the introduced coordinate
transformation is used to optimize the convergence behavior of
this numerical solution. Thus, the reflection coefficient I;(z) can
be found as a function of the frequency and of the expansion
coefficients of the impedance function K;(z). Two kinds of
solutions of the Riccati’s differential equation are possible.

1) If the impedance function K;(z) is known at P different
coordinate values z, for a given frequency f = f,, the Riccati’s
differential equation can be solved for the unknown reflection
coefficients by finding the zeros of the above-mentioned differen-
tial equation numerically.

2) If a function I(z), i.e., the reflection coefficient is given as
a function of the frequency f at the P frequency points, (P +1)
equations can be derived for the (P +1) unknown coefficients a,,
of the series expansion of K,(z). In this case, it must be made
sure that the contour function f(z) is realizable (see (6) and (9)).

III. NUMERICAL AND EXPERIMENTAL RESULTS

During the numerical investigations, five different shapes of
inhomogeneous finlines have been analyzed: the exponential
taper, the near-optimum taper [4], the linear taper, the taper of
the second-order degree, and the taper of the fourth-order degree.
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Fig. 4. The calculated and measured scattering parameters of a two-taper
section as a function of the frequency.

The eigenreflection coefficient of the input port of these tapers is
shown in Fig. 3 as a function of the length 2/ for tapers on a
RT /Duroid 6010 substrate material at 10 GHz.

These types of tapers lead to a realizable contour function; this
means that besides being real this function is well defined in the
interval of the inhomogeneous finline for z-values between —/
and +/ and that it is quadratically integrable. By means of the
developed theory and an optimization procedure, the length of
the taper can be minimized for given reflection coefficients by
changing the coefficients g, of the series in (10), which describe
the contour function indirectly. ‘

Fig. 4 serves as an example; it shows the calculated and
measured scattering parameters of a two-taper section; geometri-
cally, the slot has the character of an exponential function.

By using the theoretical results for inhomogeneous finlines, a
broad-band pin diode attenuator has been developed for an
X-band system to measure the magnetic and the dielectric material
parameters. This attenuator employs a similar two-taper section
as given by Fig. 4. The designed two-taper section must have less
than a 0.3-dB transmission loss and a reflection loss higher than
22 dB. Here, a near-optimum taper with less than a 0.1-dB
transmission loss and a reflection loss higher than 30 dB has been
chosen as an inhomogeneous finline section. With these require-
ments, the near-optimum transformers are designed on an iso-
tropic substrate with a thickness of 0.125 mm and a dielectric
constant €, =2.22 (RT/Duroid 5880). The optimum design of
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TABLE I

Sy | 2199527160E+00

6009339206E-02

s, | - 14973785 21E+ 00

S3 3037782331E+01

1154783127€E+ 02

-89200134 27E + 01

sg| 7731410547E + 01

s; | - 48593138 89E + 01

Sg 1854203359E +O1

Sq 3181239616 E+00

the contour function is obtained, if the input reflection coeffi-
cient s, =I5(z = — /) for the full X-band (f, =8 GHz, f, =12.5
GHz) is kept below a prescribed limit of 0.1 dB. In this case, an
optimum length of taper of 2/ = 50 mm has been found. The slot
width of the taper section is determined by

9 n
y=s(z)= Y %(1212) , —I<z<+I1 (16)
n=0

Table I shows the coefficients of this power series s, for this
design.

The geometrical dimensions, as well as the transmission prop-
erties of the optimized two-taper section, are shown in Fig. 5.

Although this device has a transmission loss of < 0.2 dB, the
reflection loss of 22 dB is smaller than the 26 dB calculated by
the above theory. This is a consequence of the fact that the
dielectric loss and the discontinuities between the rectangular
waveguide and the inhomogeneous finline section in the theory
have been neglected. The dielectric loss is about 0.1-0.12 dB over
the total X-band. Since the copper sheet on the substrate rusts
rapidly, the copper must be coated with a thin gold sheet for the
application as a pin diode attenuator. It has to be noted that the
quality of the transmission properties is decreased in this case
(see Fig. 5).

Next, the method described above will be explained by using
an impedance exponential taper as an example. As follows from
the Paley—Wiener approximation theory, the contour function of
the impedance exponential taper is also a realizable function, i.e.,
the quadratic integral given by (9) is bounded. The required
two-taper section is designed to have a return loss higher than 26
dB over the total Ka-band. Fig. 6 shows the transmission and
reflection coefficients for a two-taper section consisting of two
identical impedance exponential tapers. This finline structure can
be used as an antenna in finline technique.

In all of these cases, the convergence has been good and the
computing time has been relatively short (approximately 0.03 s
for one frequency point on a Control Data CYBER 76 computer).
The measurements have been made using an automatic network
analyzer.

IV. CONCLUSIONS

A simple modification of an existing design technique for
rectangular waveguide transitions has been employed to obtain a
plain and fast description of tapers in finline technique. For
practical applications, several tapers have been designed using
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this technique, and they have successfully been tested for the X-
and the Ka-band.

The required inhomogeneous finline structures for some in-
tegrated millimeter-wave devices, like attenuators, oscillators, iso-
lators, circulators, etc., have already been realized by employing
this method.
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Phase-Matched Waveguide Using the Artificial
Anisotropic Structure and its Application to a Mode
Converter

TETSUYA MIZUMOTO, STUDENT MEMBER, 1EEE, HIROHIKO
YAMAZAKI, aAND YOSHIYUKI NAITO, SENIOR MEMBER, IEEE

. Abstract —Phase matching by the artificial anisotropic structure and its
application to a mode converter are proposed for millimeter-wave dielectric
circuitry. A phase-matched dielectric planar waveguide is designed and
mode conversion characteristics are studied. An experimental result of the
nonreciprocal mode converter are presented to show the usefulness of the
structure. '

I. INTRODUCTION

As a transmission medium for low-cost integrated circuitry,
dielectric waveguides have been studied in the millimeter-wave
frequency range. Couplers and filters were designed in dielectric
waveguide forms and realized with good performances [1], [2].
Nonreciprocal devices, such as isolators and circulators, were also
studied [3]. As the waveguiding property of dielectric waveguides
in millimeter-wave frequencies is very similar to that in optical
frequencies, some devices in dielectric waveguide forms are inter-
esting for optical integrated circuits.

There has been proposed an optical isolator making use of
mode conversion between two cross-polarized modes [4], [5]. In
order to obtain sufficient mode coupling in these devices, it is
necessary to realize phase matching between the modes in ques-
tion. This means that the propagation velocities in the wayeguide
must be equalized. This also glves rise to a great difficulty for
realizing a practical device.

In this paper, as a simulation to optical apphcatlons we
propose a method for equalizing the propagation constants of the
two cross-polarized modes in a dielectric waveguide. The
proposed waveguide (Fig. 1) is called an artificial anisotropic
waveguide. This technique can be apphed with no difficulty .to
waveguide-type mode- converters and/or ‘isolators. A similar
waveguide has been proposed and designed for optical applica-
tions [6]. The optical artificial anisotropic waveguide consists of
dielectric thin film loaded by dielectric strips. In: the proposed
waveguide for millimeter-wave, dielectric strips are replaced by
thin conductor strips, for a conductor can be regarded as a
dielectric of infinite permittivity in this frequency range. .

We first describe an- analytical procedure to calculate the
propagation velocity, in the artificial anisotropic waveguide and
show an example of a design of phase-matched waveguide. Mode
conversion characteristics are also examined numerically for the
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con<i|uctor strip

Y4
Fig. 1. The artificial anisotropic waveguide for milliméter-waves.
a . conductor
r—w [ s‘trip

.

/
conductor plate
@ (b)
Fig. 2. Cross-sectional view of the artificial anisotropic waveguide and the

structures to be analyzed. Both the planes 4 and. B are electric walls in (a)
and magnetic walls in (b).

waveguide containing magnetic anisotropy. Finally, the mode
conversion observed in a fabricated waveguide is reported.

II. PHASE-MATCHING CONDITION AND MODE
CONVERSION CHARACTERISTICS

Fig. 1 shows the proposed wavegmde structure, which consists
of a dielectric slab of thickness d loaded by conductor strips of
width w. The structure extends infinitely in the x—z plane. The
propagation direction is along the z axis. All the materials of the

-waveguide are assumed to be lossless. The dielectric has a relative

dielectric constant ¢, .

Propagating electromagnetlc fields are numencally analyzed by
using a method similar to that described in [7]. For simplicity of
analysis, the conductor strips loading the guiding layer are placed
periodically in the x direction. The periodicity is not necessary
for the operating principle. For the .electromagnetic fields to
satisfy the periodicity in the x direction, transverse boundary
conditions are restricted to the two types as shown in Fig. 2. In
Fig. 2 (a), both the planes 4 and B are electric walls and in (b) -
magnetic walls. The eigenmodes can be classified into two groups,
corresponding to the boundary conditions of Fig. 2(a). or (b). The
former determines E* modes and the latter EY modes. Hypothet-
ical conductor plates are placed at y=—h and & for conveni-
ence of analysis. ‘

When the scalar potentials for TM and TE waves are defined
by ¥ and ™ respectively, the electromagnetic fields of
hybrid modes, which actually propagate in the waveguide are
given by [7, eq. (1)].

After applying the boundary conditions on both the hypothetl-
cal conductor plates and the side walls, one obtains the scalar
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