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The following special cases of this paper coincide with Wheeler

[1]:

Herein Wheeler

Fig.1 n=2 Fig. 23
n=3 25
n=4 25

Fig.2 n=2 26
n=4 26

Fig.3 n=2 26.

(b)

[1]

[2]

[3]

[4]

REFEMNCES

H. A. Wheeler, ‘<Transmission-line conductors of various cross sections,”

IEEE Trans. Mzcrowrzue Theory Tech., vol. MTT-28, pp. 73-83, Feb.

1980.

H. J. Riblet, “An accurate determination of the characteristic impedance

of the coaxial system consisting of a square concentric with a circle,”

IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 714-715, Aug.

1975.

H. J. Riblet, “An expansion of the Terakado solution with an application,”

IEEE Trans. Microwave Theoy Tech., vol. MTT-30, pp. 2036-2039, Nov.

1982.

R. Terakado, “The characteristic impedance of rectangul~ coaxial line

with ratio 2:1 of outer-to-inner conductor side length,” IEEE Trans.

Microwave Theory Tech., vol. M’I”T-24, pp. 124-125, Feb. 1976.

(c) (d)

Fig. 6. A family of polygon cross sections suited for the same rule as the

preceding figures.

rically equal triangles not arranged on a half side but on a whole

side of the inner regular octagon. Furthermore, two geometrically

equal triangles are not right-angled. The exact wave resistance

becomes (because R.= 1)

R= Ro/8

and rz =1.765 and rd = 4.262.

Fig. 6(b), having five geometrically equal right-angled triangles,

is symmetrical with three mirror lines, though the inner regular

hexagon has six mirror lines. The exact wave resistance is

R=~K’(k)
— RO = 0.09298R0

6 K(k)

where

‘=v’zzmz=O’713
The radii are rz = 1.5 and rd = 2.0.

In Fig. 6(c), two geometrically equal triangles are not right-

angled, and they ye arranged on a whole side of the outer regular

octagon. This case can be considered to be the inversion of Fig.

6(a). Therefore, the exact wave resistance is the same as Fig. 6(a).

The radii are rz =1.631, rq = 0.4142, and r~ = 1.765.

In Fig. 6(d), both of the inner and outer conductors are not

equiangular polygons. This case is considered as a slight variation

for n = 3 of Fig. 2 having’ three geometrically equal right-angled

triangles. The wa;e resistance is equal to Fig. 2 because the

procedure of mapping to a semi-circle is similar to Fig. 2. Fig.

6(d) has R = 0.1303R0, rz = 1.609, r3 = 0.5877, and r4 = 2.433.

V. CONCLUSION

Some shapes of coaxial inner and outer regular polygonal

conductors can be exactly evaluated on their wave resistance.

Analysis of the Transmission Characteristics of

Inhomogeneous Grounded Finlines

ADALBERT BEYER

Abstract —This paper describes a concept for an efficient design of

finline tapers that is espeeiafly useful in cases when certain quantities have

heen prescribed with respect to reflection loss and bandwidth. Since abrupt

discontinuities are neglected, the analysis is applicable to smooth ffnline

tapers only.

Various contour functions are investigated for the taper optimization.

Experimental results for optimized tapers confirm the design theory.

I. INTRODUCTION

Smooth inhomogeneous finlines have already been used as

broad-band components like transformers, attenuators, detectors,

mixers, and nonreciprocal elements [1], [2], [5].

In the beginning, the design of inhomogeneous finlines was

mainly done experimentally, i.e., the cross sections of these tapers

had been designed with a general parabolical dependence of the

slot widths (2s ) on the length coordinate (z) with the exponent

of the parabola having been determined experimentally [5].

Recently, there have been publications of nonexperimental

design procedures, e.g., in [6], where the use of a spectral-domain

approach has been suggested. Another concept [9], which consid-

ers inhomogeneous finlines that consist of an infinite number of

elementary homogeneous finline sections, has proved the realiza-

bility of this line.

This paper follows the method presented in [4], which has the

considerable advantage of taking into account the influence of

the thickness of the metallization and of the longitudinal slits in

the housing.
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Fig. 1. Geometry of the unilateral grounded finline section

II. Tm METHOD

Consider the cross section of a finline placed on the lossless

conductor and having a closed boundary 1 (Fig. 1).

All the electromagnetic fields inside the waveguide are ex-

pressible in terms of the Hertz potentials @ and ~. The z

dependence of the fields can be described employing a linear

combination of exp(yz) and exp(–yz), where y is the propa-

gation factor. The time dependence of the electromagnetic fields

exp (jui) is omitted in the following train of thought.

If the problem of the inhomogeneous finline is to be solved, it

is a fundamental supposition that the properties of the homoge-

neous finline above are known accurately, considering even sec-

ond-order effects like the metallization thickness d and the

supporting slit in the wavegnide mount c. Thus, a complete study

of the grounded unilateral finline is given by [3], where the

eigenvalue equation system is solved by applying the

Ritz- Galerkin method. Using the results of this method, the

eigenvrdues pm ~, the electromagnetic fields, the effective dielec-

tric constants Ceff,~., as well as the characteristic impedance

~~~ of finlines can be calculated as a function of the geometn-Z

caJ dimensions and the above-mentioned second-order effects.

Next, consider the longitudinal section of a finline (3) shown in

Fig. 2 which is terminated by homogeneous finlines (1) and (2) on

the left- and on the right-hand side.

The transmission and the reflection properties of the problem

mentioned above can be calculated by using the generalized

telegraphists’s equations for waveguides of varying cross section

[8]

(2)

where U~ (z) and 1~ (z) are the m th modal voltage and current

of the considered inhomogeneous finline, respectively; Z~ is the

m th modal characteristic impedance of the above line. The cou-

pling coefficient C~H between the wzth and n th modal is given by

(3)

where g. and Zm are the n th and m th orthogonal vector func-

tions, respectively. The surface integral is extended over A the

total cross section of the inhomogeneous finline. In (2), the

influence of the dielectric constant Ceff,~ on the slot width 2s (z)
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Fig. 2. Longitudinal section of an inhomogeneous finline

must be taken into account via

Yrn
— = WA)+*jZm

(4)

where pfi is the m th eigenvalue of the inhomogeneous finline.

In the case of the quasi-TEIO-mode propagation in the inhomo-

geneous finline, substitution of the voltage reflection factor 17 in

the general equations (1) and (2) leads to the following expres-

sion:

dr3(z)
—–2y3(z)r3(z)

dz

+(l-r;(z))($ dlnf(z) -c,,)=o (5)

which is a Riccati’s differential equation.

In order to solve this differential equation, look at the contour

function given by

(o, —Co<z <-1

{

~(z)= ~dln K3(z)

2 dz ‘
–l<z<+l (6)

\o, +l<Z<W

The value K3 ( z) is defined as

r(O“(z)=&A. 2
A=

(7)

where cef~ and X ~ are the effective dielectric constant and A ~ the

cutoff wavelength of the quasi-TElo-mode propagation on the

inhomogeneous finline section, respectively. The known incident

wave is excited at z = – co and the waveguide is properly

terminated at z = + m.

The characteristic impedance ZO of a lossless waveguide is a

real function; consequently, its contour function ~(z) must also

be real

j(z) =f”(z). (8)

Thus, in order to examine the realizability of the given contour

function f(z), the following quadratic integral must exist

(Paley-Wi_enejs theorem): - “

Z=+co

.Jm’f(z)’’dz”

As the Riccati’s differential equation (5) will

tally, for this purpose the impedance function

(9)

be solved nurneri-

K3 (z) is expanded
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into a series given by

[

o, –#<z<–l
P

K3(z)= ~ aflzn, –I<z<+l. (lo)
~=o

o, I<z<+w

By introducing this series expansion into the formula for the

contour function ~(z) ((6)) and by using a well-known series

expansion of the logarithmic function, the following form of the

contour function can be found:

f(z)

(o, -W<z<+l

.

{ ( );Qy)(p+l) fHq+’aj+lZ1’, –I<z<+i
~=(j ~=1 9

\o,’ +l<z<+eo.

(11)

In this equation, up. ~ is a coefficient which is closely connected

to the expansion coefficients an of the impedance function

K3 (z). Now, if the propagation factor yj (z) is also expanded

into a series given by

P

Y3(Z) = z %zrn (12)

and if the function g(z), which is defined as

P

g(z) =f(z)–cf;)= ~ gkzk (13)
k=O

is substituted for the function f(z) shown above ((1 l)), the

Riccati’s differential equation can easily be solved if the reflec-

tion coefficient r~ is also formulated as

r3(z)s j rr((z–zO)kT)r.
r=o

(14)

By using the known condition for the reflection coefficient

r~(z=~)=o (15)

it can be shown that the expansion coefficient r. of the series for

r~ (z) in (14) is zero. ,~e value k= of the introduced coordinate

transformation is used to optimize the convergence behavior of

this numerical solution. Thus, the reflection coefficient r3 (z) can

be found as a function of the frequency and of the expansion

coefficients of the impedance function K3 (z ). Two kinds of

solutions of the Riccati’s differential equation are possible.

1) If the impedance function K3 (z) is known at P different

coordinate values z. for a given frequency f = f., the Riccati’s

differential equation can be solved for the unknown reflection

coefficients by finding the zeros of the above-mentioned differen-

tial equation numerically.

2) If a function rq (z), i.e., the reflection coefficient is given as

a function of the frequency f at the P frequency points, (P+ 1)

equations can be derived for the (P+ 1) unknown coefficients a.

of the series expansion of K3 (z). In this case, it must be made

sure that the contour function ~(z) is realizable (see (6) and (9)).

III. NUMERICAL AND EXPERIMENTAL RESULTS

During the numerical investigations, five different shapes of

inhomogeneous finlines have been analyzed: the exponential

taper, the near-optimum taper [4], the linear taper, the taper of

the second-order degree, and the taper of the fourth-order degree.
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Fig. 3. The eigezzreflection coefficient of the investigated tapers.
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Fig. 4. The calculated and measured scattering parameters of a two-taper
section as a function of the frequency.

The eigenreflection coefficient of the input port of these tapers is

shown in Fig. 3 as a function of the length 21 for tapers on a

RT/Duroid 6010 substrate material at 10 GHz.

These types of tapers lead to a realizable contour function; this

means that besides being real this function is well defined “in the

interval of the inhomogeneous finline for z-values between – 1

and + 1 and that it is quadratically integrable. By means of the

developed theory and an optimization procedure, the length of

the taper can be minimized for given reflection coefficients by

changing the coefficients an of the series in (10), which describe

the contour function indirectly.

Fig. 4 serves as an example; it shows the calculated and

measured scattering parameters of a two-taper section; geometri-

cally, the slot has the character of an exponential function.

By using the theoretical results for inhomogeneous finlines, a

broad-band pin diode attenuator has been developed for an

X-band system to measure the magnetic and the dielectric material

parameters. This attenuator employs a similar two-taper section

as given by Fig. 4. The designed two-taper section must have less

than a 0.3-dB transmission loss and a reflection loss higher than

22 dB. Here, a near-optimum taper with less than a O.1-dB

transmission loss and a reflection loss higher than 30 dB has been

chosen as an inhomogeneous finline section. With these require-

ments, the near-optimum transformers are designed on an iso-

tropic substrate with a thickness of 0.125 mm and a dielectric

constant c, = 2.22 (RT/Duroid 5880). The optimum design of
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TABLE I

so .2199527160 E+O0

%
6009339206 E-02

S2
- IL97378521E+O0

S3 3037782331 E+01

% 1154783127E +02

S5 -8920013427E +01

‘6 7731410547E+O1

S7 -L859313889E +01

‘8 185 f+203359E +01

% 3181239616 E+00

the contour function is obtained, if the input reflection coeffi-

cient Sll = rq (z = – 1) for the full X-band (~1 = 8 GHz, f2 =12.5

GHz) is kept below a prescribed limit of 0.1 dB. In this case, an

optimum length of taper of 21= 50 mm has been found. The slot

width of the taper section is determined by

()Y=S(z)= ~ ~ E ‘,
~=o 2 21

–l<z <i-l. (16)

Table I shows the coefficients of this power series s. for this

design.

The geometrical dimensions, as well as the transmission prop-

erties of the optimized two-taper section, are shown in Fig. 5.

Although this device has a transmission loss of <0.2 dB, the

reflection loss of 22 dB is smaller than the 26 dB calculated by

the above theory. This is a consequence of the fact that the

dielectric loss and the discontinuities between the rectangular

waveguide and the inhomogeneous finline section in the theory

have been neglected. The dielectric loss is about 0.1–0.12 dB over

the total X-band. Since the copper sheet on the substrate rusts

rapidly, the copper must be coated with a thin gold sheet for the

application as a pin diode attenuator. It has to be noted that the

quality of the transmission properties is decreased in this case

(see Fig. 5).

Next, the method described above will be explained by using

an impedance exponential taper as an example. As follows from

the Paley– Wiener approximation theory, the contour function of

the impedance exponential taper is also a realizable function, i.e.,

the quadratic integral given by (9) is bounded. The required

two-taper section is designed to have a return loss higher than 26

dB over the total Ku-band. Fig. 6 shows the transmission and

reflection coefficients for a two-taper section consisting of two

identical impedance exponential tapers. This finline structure can

be used as an antenna in finline technique.

In all of these cases, the convergence has been good and the

computing time has been relatively short (approximately 0.03 s

for one frequency point on a Control Data CYBER 76 computer).

The measurements have been made using an automatic network

analyzer.

IV. CONCLUSIONS

A simple modification of an existing design technique for

rectangular waveguide transitions has been employed to obtain a

plain and fast description of tapers in finline technique. For

practical applications, several tapers have been designed using
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Fig. 5. The calculated and the measured values of the reflection coefficient

1.,, I and the transmission coefficient Islz I of a symmetrical two-taper section.
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this technique, and they have successfully been tested for the X-

and the Ku-band.

The required irrhomogeneous finline structures for some in-

tegrated millimeter-wave devices, like attenuators, oscillators, iso-

lators, circulators, etc., have already been realized by employing

this method.
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Phase-Matched Waveguide Using-the Artificial

Anisotropic Structure and its Application to a Mode

Converter

TETSUYA MIZUMOTO, STUDENTMEMRER, IEEE, HIROHIKO

YAMAZAKI, AND YOSHIYUKI NAITO, SEN1ORMRMBER,IEEE

Afmtruet —Phase matching by the artificial anisotropic structure and its

application b a mode converter are proposed for milfimeter-wave dielectric

circuitry. A phase-matched dielectric planar waveguide is designed and

mode conversion characteristics are studied. An experimental result of the

nonreciprocal mode converter are presented to show the usefnfness of the

structure.

I. INTRODUCTION

As a transmission medium for low-cost integrated circuitry,

dielectric waveguides have been studied in the millimeter-wave

frequency range. Couplers and filters were designed in dielectric

waveguide forms and realized with good performances [1], [2].

Nonreciprocal devices, such as isolators and circulators, were also

studied [3]. As the waveguiding property of dielectric waveguides

in millimeter-wave frequencies is very similar to that in optical

frequencies, some devices in dielectric waveguide forms are inter-

esting for optical integrated circuits.

There has been proposed an optical isolator making use of

mode conversion between two cross-polarized modes [4], [5]. In

order to obtain sufficient mode wupling in these devices, it is

necessary to realize phase matching between the modes in ques-

tion. This means that the propagation velocities in the waveguide

must be equalized. This also gives rise to a great difficulty for

realizing a practical device.

In this paper, as a simulation to optical applications, we

propose a method for equalizing the propagation constants of the

two cross-polarized modes in a dielectric waveguide. The

proposed waveguide (Fig. 1) is called an artificial anisotropic

waveguide. This technique can be applied with no difficulty to

waveguide-type mode wnverters and/or isolators. A similar

waveguide has been proposed and designed for optical applica-

tions [6]. The optical artificial a.nisotropic waveguide consists of

dielectric thin film loaded by dielectric strips. In the proposed

waveguide for millimeter-wave, dielectric strips are replaced by

thin conductor strips, for a conductor can be regarded as a

dielectric of infinite permittivity in this frequency range.

We first describe an analytical procedure to calculate the

propagation velocity in the artificial anisotropic waveguide and

show an example of a design of phase-matched waveguide. Mode

conversion characteristics are also examined numerically for the
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Fig. 1. The artificial anisotropic waveguide for millimeter-waves.
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Fig. 2. Cross-sectionaJ view of the artificitd anisotropic waveguide and the

structures to be analyzed. Both the planes A and B are electric walls in (a)

and magnetic walls in (b).

waveguide containing magnetic anisotropy. Finally, the mode

conversion observed in a fabricated waveguide is reported.

II. PHASE-MATCHING CONDITION AND MODE

CONVERSION CHARACTERISTICS

Fig. 1 shows the proposed waveguide structure, which consists

of a dielectric slab of thickness d loaded by conductor strips of

width w. The structure extends infinitely in the x – z plane. The

propagation direction is along the z axis. All the materials of the

waveguide are assumed to be lossless. The dielectric has a relative

dielectric constant e,.

Propagating electromagnetic fields are numerically analyzed by

using a method similar to that described in [7]. For simplicity of

analysis, the conductor strips loading the guiding layer are placed

periodically in the x direction. The periodicity is not necessary

for the operating principle. For the electromagnetic fields to

satisfy the penodicity in the x direction, transverse boundary

conditions are restricted to the two types as shown in Fig. 2. In

Fig. 2 (a), both the planes A and B are electric walls and in (b)

magneticwalls. The eigenmodes c,m be classified into two. groups,

corresponding to the boundary conditions of Fig. 2.(a) or (b). The

former determines E’ modes and the latter 11~ modes. Hypothet-

ical conductor plates are placed at y = – h and b for conveni-

ence of analysis.

When the scalar potentials for TM and TE waves are defined

by +(’) and $Cfi), respectively, the electromagnetic fields of

hybrid modes, which actually propagate in the waveguide, are

given by [7, eq. (l)].

After applying the boundary conditions on both the hypotheti-

cal conductor plates and the side walls, one obtains the scalar
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